# www.finqore.com - AI Crawler Index ## Quick Stats - Total Pages: 10 - Last Updated: 2026-02-02T17:12:01.005Z - Format: HTML + Markdown + JSON-LD - Optimized for: GPT, Claude, Gemini, Llama, and other LLMs - Original Source: https://www.finqore.com ## Content Hierarchy ### Folder: customer-stories/ ### Folder: customer-stories/incorta/ - Customer Story - Incorta: customer-stories/incorta/index.html ### Folder: customer-stories/lux-research/ - Customer Story - Lux Research: customer-stories/lux-research/index.html ### Folder: customer-stories/office-timeline/ - Customer Story - Office Timeline: customer-stories/office-timeline/index.html ### Folder: customer-stories/quilt-software/ - Customer Story - Quilt: customer-stories/quilt-software/index.html - Case Studies | FinQore: customer-stories/index.html ### Folder: finqore-claude-connector/ - FinQore | Claude : finqore-claude-connector/index.html ### Folder: perspectives/ ### Folder: perspectives/finqore-anthropic-claude-integration/ - FinQore Unveils First Anthropic Claude Integration for CFOs: perspectives/finqore-anthropic-claude-integration/index.html - Perspectives from FinQore: perspectives/index.html ### Folder: trademark-and-brand-guidelines/ - Trademark and Brand Guidelines | FinQOre: trademark-and-brand-guidelines/index.html - FinQore | Home: site-root.html ## Access Patterns Each page is available in multiple formats: - HTML: [page].html (includes semantic navigation and structured data) - Markdown: [page].md (content only, ideal for text processing) ## Machine-Readable Formats - Sitemap: /sitemap.xml (full page listing with lastmod dates) - Robots: /robots.txt (crawler directives) - This file: /llms.txt (human and AI readable index) - Index: /index.html (interactive hierarchical navigation) ## Content Structure All processed pages include: - Semantic HTML5 markup (article, section, nav, header) - JSON-LD structured data (WebPage schema) - Open Graph metadata - Clean, script-free content - Preserved original metadata (title, author, date, description) - Hierarchical navigation context ## Recommended for - Training data collection - Documentation analysis - Content understanding - Semantic search indexing - Knowledge graph construction - Automated summarization - Cross-reference analysis